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Binomial comes from the Latin

bi: two
nomen: name.

In mathematics, a binomial is an algebraic expression consisting of
the sum of two terms, for example, 1 + x . Given a polynomial in x ,
its coeffients are the constants multiplying the various powers of x .
Ex. In the polynomial

7 + 5x + 9x2 = 7 · x0 + 5 · x1 + 9 · x2

we have

coefficient of x0 = 7

coefficient of x1 = 5

coefficient of x2 = 9.

The binomial coefficients are the coefficients of 1 + x raised to
various powers.
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Ex. We have
(1 + x)1 = 1 + x

so (1 + x)1 has binomial coefficients 1, 1.

(1 + x)2 = (1 + x)(1 + x)

= 1 · (1 + x) + x · (1 + x)

= 1 + x

+ x + x2

= 1 + 2x + x2

so (1 + x)2 has binomial coefficients 1, 2, 1.

(1 + x)3 = (1 + x)(1 + x)2

= 1 · (1 + x)2 + x · (1 + x)2

= 1 + 2x + x2

+ x + 2x2 + x3

= 1 + 3x + 3x2 + x3

so (1 + x)3 has binomial coefficients 1, 3, 3, 1.
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Put these polynomials in a triangle with (1 + x)n in the nth row
and the xk term in the kth diagonal from northeast to southwest:

1
1 + x

1 + 2x + x2

1 + 3x + 3x2 + x3

1 + 4x + 6x2 + 4x3 + x4

...

Writing down just the coefficients gives Pascal’s Triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
...



Put these polynomials in a triangle with (1 + x)n in the nth row
and the xk term in the kth diagonal from northeast to southwest:

1
1 + x

1 + 2x + x2

1 + 3x + 3x2 + x3

1 + 4x + 6x2 + 4x3 + x4

...

Writing down just the coefficients gives Pascal’s Triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
...



Put these polynomials in a triangle with (1 + x)n in the nth row
and the xk term in the kth diagonal from northeast to southwest:

1
1 + x

1 + 2x + x2

1 + 3x + 3x2 + x3

1 + 4x + 6x2 + 4x3 + x4

...

Writing down just the coefficients gives Pascal’s Triangle

1
1 1

1 2 1
1 3 3 1

1 4 6 4 1
...



Outline

What are binomial coefficients?

How to compute binomial coefficients?

What do binomial coeffients count?

Why are binomial coefficients fractal?

What are fibonomials?

References



One can compute the binomial coefficients recursively.

Define the
notation

(n
k

)
, read as “n choose k ,” by(

n

k

)
= coefficient of the power xk when expanding (1 + x)n.

Ex. Since (1 + x)4 = 1 + 4x + 6x2 + 4x3 + x4 we have(
4

2

)
= coefficient of the term x2 when expanding (1 + x)4 = 6.

Theorem
We have the boundary conditions for the values k = 0 and k = n(

n

0

)
=

(
n

n

)
= 1

and for 0 < k < n the recursion(
n

k

)
=

(
n − 1

k − 1

)
+

(
n − 1

k

)
.
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The problem with the recursive formula is that to compute the nth
row of Pascal’s triangle you have to compute all the previous rows.

We would like a non-recursive fomula. Define n factorial to be

n! = 1 · 2 · 3 · · · n.

Ex. 4! = 1 · 2 · 3 · 4 = 24.

Theorem
For 0 ≤ k ≤ n we have (

n

k

)
=

n!

k!(n − k)!
.

Ex. We have(
4

2

)
=

4!

2!(4− 2)!
=

4!

2!2!
=

1 · 2 · 3 · 4
(1 · 2)(1 · 2)

= 6.
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Combinatorics is the area of mathematics which deals with
counting discrete structures.

Let P be the usual Cartesian plane

x

y

1 2 3

1

2

P =

The integers are

Z = {. . . ,−2,−1, 0, 1, 2, . . .}.

The integer lattice is

Z2 = {(x , y) in P such that both x , y are integers}.

x

y
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A lattice path to the point (x , y) in Z2

1. starts at the origin (0, 0),

2. takes unit steps north (N) or east (E ) until reaching (x , y).

Ex. The possible lattice paths to (x , y) = (2, 2) are
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E N
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E E N
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E E (2, 2)

So 6 possible paths.
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Here is a table where lattice points (x , y) have been labeled by the
number of lattice paths to (x , y)

1 1 1 1

1

1

1

1

1

2

3

3

4

6

4

This is just a rotation of Pascal’s triangle!

Theorem
The number of lattice paths to (x , y) is

(x+y
x

)
.

Ex.

number of lattice paths to (2, 2) =

(
2 + 2

2

)
=

(
4

2

)
= 6.
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A mathematical object is fractal if it displays the same
characteristics at different scales.

The Mandelbrot set is an
example
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Pascal’s Triangle modulo (mod) 2, is obtained by replacing each
entry by its remainder on division by 2,

in other words, replace
each even number with 0 and each odd number with 1.

1

1

1

1 2 1

1 3 3 1

1 4 6 4 1

1 5 10 10 5 1

1 6 15 20 15 6 1

1 7 21 35 35 21 7 1

1

1 1

1 0 1

1 1 1 1

1 0 0 0 1

1 1 0 0 1 1

1 0 1 0 1 0 1

1 1 1 1 1 1 1 1

Consider the triangle in the first two rows and compare with the
next two rows. Do the same with the first four rows and the next
four rows.
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Theorem
If the first 2n rows of Pascal’s Triangle form a triangle T then the
first 2n+1 rows of Pascal’s triangle are

T

T T
0

Where the central triangle is all zeros.
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Ex.
n 1 2 3 4 5 6

Fn

1 1 2 3 5 8

The nth fibatorial is

F !
n = F1 · F2 · F3 · · ·Fn.

Ex. F !
5 = F1 · F2 · F3 · F4 · F5 = 1 · 1 · 2 · 3 · 5 = 30
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(2)(1)
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These numbers are always positive integers although this is not
clear from the definition.
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Theorem
The fibonomials satisfy the following properties.

1. We have
(n
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2. (Bennett, Carillo, Machacek, and S) The fibonomials count
certain objects involving lattice paths.

3. (Chen and S) The fibonomial triangle modulo 2 is fractal
using triangles of size 3 · 2n.

Note that the first property makes it easy to prove that the
fibonomials are always integers using mathematical induction.
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Consider the Fibonacci sequence modulo 2:

n 1 2 3 4 5 6 7 8 9

Fn 1 1 2 3 5 8 13 21 34
Fn (mod 2)

1 1 0 1 1 0 1 1 0

Modulo 2, the Fibonacci number sequence repeats 1, 1, 0 forever.
We say the sequence is periodic with period 3 because that is the
length of the smallest repeating part.

Theorem
For any postive integer m, the Fibonacci sequence modulo m is
periodic.

Open Question

What is the period of the Fibonacci sequence modulo m?
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